Synthesis of Unsymmetrical Tetraazapentalene Derivatives

Noboru MATSUMURA, * Masaaki TOMURA, Osamu MORI, and Shigeo YONEDA *

Department of Applied Chemistry, College of Engineering,

University of Osaka Prefecture, Sakai, Osaka 591

The synthesis of unsymmetrical tetraazapentalene derivatives was achieved by the reaction of thiadiazole derivatives ($\underline{2}$) with various isothiocyanates. Compounds $\underline{2}$ were easily derived from symmetrical tetraazapentalene derivatives.

We have recently reported the preparation of the tetraazapentalene derivatives by a convenient one-pot reaction using lithium thioureide/phenacyl chloride/alkyl isothiocyanate system. These compounds are of interest from the structural point of view. In spite of the existence of four tertiary nitrogen atoms, the framework of $(\underline{1})$ (R¹ = CH₃CH₂) was elucidated to be planar by X-ray crystallographic analysis. This characteristic structure prompted us to investigate the chemical behavior of this type of tetraazapentalenes.

The thermolysis or oxidation reaction of 3,4-dimethyl-1,6-propano-1H,6H-3a-thia(S^{IV})-1,3,4,6-tetraazapentalene-2,5(3H,4H)-dithione ($\underline{1a}$) gave easily 6,7-dihydro-2-methyl-5H-pyrimido[1,2-d][1,2,4]thiadiazole-3(2H)-thione ($\underline{2a}$). Furthermore, we have found that $\underline{2a}$ undergoes a 1,3-dipolar cycloaddition with various isothiocyanates to give unsymmetrical tetraazapentalenes substituted by different groups at 3,4-positions. In this communication, we report the first preparation and characterization of various unsymmetrical tetraazapentalene derivatives.

When the compounds $\underline{1}$ were heated at 170 °C under reduced pressure (2 mmHg) or treated at room temperature with sodium metaperiodate in methanol, the products ($\underline{2}$) were obtained in moderate yields. A typical procedure is as follows: Method A; Thermolysis of $\underline{1}$ (200 mg) was carried out at 170 °C for 5 h under reduced pressure (2 mmHg). Then the products were chromatographed on a preparative TLC to give $\underline{2}$ as a colorless solid. Method B; To a methanol solution of $\underline{1}$ (0.23 mmol) was added

1066 Chemistry Letters, 1987

a sodium metaperiodate (0.33 mmol) with stirring at room temperature under argon. After the reaction mixture was continued to stir for 5 h, methanol was removed in vacuo. The residual mixture was stirred in chloroform (50 ml) for 1 min, and the resulting suspension was filtered. After the filtrate was condensed under reduced pressure, the residue was chromatographed on a preparative TLC to give $\underline{2}$ as a colorless solid. The yields are shown in Table 1.

	R ¹	Method	Product	2, Yield/%
<u>1a</u>	CH ₃	A ^{a)}	<u>2a</u>	69
<u>1a</u>	CH ₃	_B b)	<u>2a</u>	33
<u>1b</u>	CH ₂ =CHCH ₂	A	<u>2b</u>	75
<u>1b</u>	$CH_2 = CHCH_2$	В	<u>2b</u>	27

Table 1. Preparation of Thiadiazole Derivatives 2

The thermolysis under reduced pressure (method A) is preferable to the oxidation reaction using $NaIO_4$ (method B) for the preparation of $\underline{2}$. The structure of $\underline{2}$ was determined by IR, 1H -NMR, Mass spectra, and elemental analysis.

The compounds $\underline{2}$ reacted smoothly with the isothiocyanates to give $(\underline{3})$. When the reactions of various isothiocyanates (1.5 times molar quantity of $\underline{2}$) with $\underline{2}$ were carried out in refluxing chloroform for 3 h, the unsymmetrical tetraazapentalene derivatives $\underline{3}$ were obtained in good yields. The yields and melting points are shown in Table 2. All compounds were characterized by IR, $^1\text{H-NMR}$, $^{13}\text{C-NMR}$, UV, Mass spectra, and elemental analyses.

Entry	R^{1}	R ²	Product	Mp (dec.)/°C	Yield/%b)
1	CH ₃	СН ₃ СН ₂	<u>3c</u>	200-202	8 4
2	CH ₃	С ₆ Н ₅	<u>3d</u>	179-182	85
3	CH ₃	$p-C1C_6H_4$	<u>3e</u>	188-191	63
4	CH ₂ =CHCH ₂	CH ₃	<u>3f</u>	185-188	63
5	CH ₂ =CHCH ₂	СН ₃ СН ₂	<u>3g</u>	186-189	86
6	CH ₂ =CHCH ₂	$p-C1C_6H_4$	<u>3h</u>	140-142	66

Table 2. Preparation of Unsymmetrical Tetraazapentalene Derivatives 3a)

References

- 1) N. Matsumura, M. Tomura, R. Mando, Y. Tsuchiya, and S. Yoneda, Bull. Chem. Soc. Jpn., <u>59</u>, 3693 (1986); N. Matsumura, M. Tomura, Y. Tsuchiya, S. Yoneda, and M. Nakamura, Chem. Express, 1, 487 (1986).
- 2) N. Matsumura, M. Tomura, S. Yoneda, and K. Toriumi, Chem. Lett., 1986, 1047.

 (Received February 21, 1987)

a) The compound was heated at 170 $^{\circ}\mathrm{C}$ under reduced pressure. b) Sodium metaperiodate was used as an oxidizing agent.

a) The reactions were carried out in refluxing chloroform for 3 h.b) Isolated yield.